Biocompatible Coating of Encapsulated Cells Using Ionotropic Gelation
نویسندگان
چکیده
The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts' immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans' islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy.
منابع مشابه
Preparation of Microspheres of Diclofenac Sodium by Ionotropic Gelation Technique
Diclofenac sodium is a non-steroidal anti-inflammatory drug used in the treatment of arthritis. Treatment with NSAIDs is observed to have gastro intestinal side effects and the formulation of Diclofenac sodium using biodegradable and biocompatible polymer in the form of microspheres is expected to decrease GI side effects. In the present study, different microsphere formulations of Diclofenac S...
متن کاملFormulation of Ibuprofen Beads by Ionotropic Gelation
Microencapsulation has become a common technique in the production of controlled release dosage forms. Many results have been reported, concerning the use of alginate beads as controlled release drug formulations. Alginate has a unique gel-forming property in the presence of multivalent cations, in an aqueous medium. Ibuprofen is an excellent analgesic and antipyretic, non-steroidal anti-inflam...
متن کاملMicroencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method
The aim of this study was to apply the external ionic gelation using an atomizing spray device comprised of a spray gun to improve the viability of Lactobacillus plantarum DKL 109 and for its commercial use. Three coating material formulas were used to microencapsulate L. plantarum DKL 109: 2% alginate (Al), 1% alginate/1% gellan gum (Al-GG), and 1.5% alginate/3% gum arabic (Al-GA). Particle si...
متن کاملAlginate-Poly(ethylene glycol) Hybrid Microspheres for Primary Cell Microencapsulation
The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol) hybrid microspheres (alg-PEG-M) were produced by combining ionotropic gelation of sodium algina...
متن کاملControl of thiol-maleimide reaction kinetics in PEG hydrogel networks.
Michael-type addition reactions are widely used to polymerize biocompatible hydrogels. The thiol-maleimide modality achieves the highest macromer coupling efficiency of the reported Michael-type pairs, but the resulting hydrogel networks are heterogeneous because polymerization is faster than the individual components can be manually mixed. The reactivity of the thiol dictates the overall react...
متن کامل